skip to main content


Search for: All records

Creators/Authors contains: "McKenna, Duane D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Rosalia funebris (RFUNE; Cerambycidae), the banded alder borer, is a longhorn beetle whose larvae feed on the wood of various economically and ecologically significant trees in western North America. Adults are short-lived and not known to consume plant material substantially. We sequenced, assembled, and annotated the RFUNE genome using HiFi and RNASeq data. We documented genome architecture and gene content, focusing on genes putatively involved in plant feeding (phytophagy). Comparisons were made to the well-studied genome of the Asian longhorned beetle (AGLAB; Anoplophora glabripennis) and other Cerambycidae. The 814 Mb RFUNE genome assembly was distributed across 42 contigs, with an N50 of 30.18 Mb. Repetitive sequences comprised 60.27% of the genome, and 99.0% of expected single-copy orthologous genes were fully assembled. We identified 12,657 genes, fewer than in the four other species studied, and 46.4% fewer than for Aromia moschata (same subfamily as RFUNE). Of the 7,258 orthogroups shared between RFUNE and AGLAB, 1,461 had more copies in AGLAB and 1,023 had more copies in RFUNE. We identified 240 genes in RFUNE that putatively arose via horizontal transfer events. The RFUNE genome encoded substantially fewer putative plant cell wall degrading enzymes than AGLAB, which may relate to the longer-lived plant-feeding adults of the latter species. The RFUNE genome provides new insights into cerambycid genome architecture and gene content and provides a new vantage point from which to study the evolution and genomic basis of phytophagy in beetles.

     
    more » « less
  2. Abstract

    The Diaprepes root weevil (DRW), Diaprepes abbreviatus, is a broadly polyphagous invasive pest of agriculture in the southern United States and the Caribbean. Its genome was sequenced, assembled, and annotated to study genomic correlates of specialized plant-feeding and invasiveness and to facilitate the development of new methods for DRW control. The 1.69 Gb D. abbreviatus genome assembly was distributed across 653 contigs, with an N50 of 7.8 Mb and the largest contig of 62 Mb. Most of the genome was comprised of repetitive sequences, with 66.17% in transposable elements, 5.75% in macrosatellites, and 2.06% in microsatellites. Most expected orthologous genes were present and fully assembled, with 99.5% of BUSCO genes present and 1.5% duplicated. One hundred and nine contigs (27.19 Mb) were identified as putative fragments of the X and Y sex chromosomes, and homology assessment with other beetle X chromosomes indicated a possible sex chromosome turnover event. Genome annotation identified 18,412 genes, including 43 putative horizontally transferred (HT) loci. Notably, 258 genes were identified from gene families known to encode plant cell wall degrading enzymes and invertases, including carbohydrate esterases, polysaccharide lyases, and glycoside hydrolases (GH). GH genes were unusually numerous, with 239 putative genes representing 19 GH families. Interestingly, several other beetle species with large numbers of GH genes are (like D. abbreviatus) successful invasive pests of agriculture or forestry.

     
    more » « less
  3. Reddy, Gadi V (Ed.)
    Abstract Insect antennae are crucial sensory organs that house numerous sensilla with receptors for perceiving a wide variety of cues dominating their world. Historically, inconsistent terminology and criteria have been used to classify antennal sensilla, which has greatly impeded the comparison of data even across closely related species. Longhorn beetles (Coleoptera: Cerambycidae) are no exception to this quandary, and despite their prominent antennae, few studies have investigated their antennal morphology and ultrastructure, and none have compared sensillar diversity and variation among cerambycids. Existing studies of longhorn beetle antennal sensilla include only 29 species in five of the eight cerambycid subfamilies and include misidentified sensilla types and conflicting terminology. As such, it is very difficult to conduct comparative morphological studies of antennal sensilla in longhorn beetles and challenging to understand inter- and intra-specific variation in the sensory systems of these beetles. To facilitate future comparative studies, we reviewed all accessible published papers that have used scanning and transmission electron microscopy (SEM and TEM) to investigate antennal sensilla in cerambycids, and present a first attempt at standardizing the classification of their documented sensilla types and subtypes. Specifically, we discuss seven major types of antennal sensilla (Böhm bristles, sensilla chaetica, chemosensory hairs, sensilla basiconica, dome shaped organs, sensilla coeloconica, and sensilla auricillica). We also imaged the antennae of relevant species of longhorn beetles using SEM and included images exemplifying as many of the sensilla types and subtypes as possible. 
    more » « less
  4. null (Ed.)
    Abstract Acoustic communication is enabled by the evolution of specialised hearing and sound producing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound producing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound producing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication. 
    more » « less
  5. Abstract

    Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic reconstructions across the tree of life. However, inadvertently incorporating non‐targeted DNA into the UCE marker design will lead to misinformation being incorporated into subsequent analyses. To date, the effectiveness of basic metagenomic filtering strategies has not been assessed in arthropods. Designing markers from museum specimens requires careful consideration of methods due to the high levels of microbial contamination typically found in such specimens. We investigate if contaminant sequences are carried forward into a UCE marker set we developed from insect museum specimens using a standard bioinformatics pipeline. We find that the methods currently employed by most researchers do not exclude contamination from the final set of targets. Lastly, we highlight several paths forward for reducing contamination in UCE marker design.

     
    more » « less
  6. Abstract

    Systematic bias is one of the major phylogenetic issues arising over the last two decades. Using methods designed to reduce compositional and rate heterogeneity, hence systematic bias, Cai and co‐workers (2022) (= CEA22) reanalyzed the DNA sequence dataset for Coleoptera of Zhang et al. (2018) (= ZEA). CEA22 suggest that their phylogenetic results and major evolutionary hypotheses about the Coleoptera should be favoured over other recently published studies. Here, we discuss the methodology of CEA22 with particular attention to how their perfunctory reanalysis of ZEA obfuscates rather than illuminates beetle phylogeny. Similar to published rebuttals of an earlier study of theirs, we specifically find that many of their claims are misleading, unsupported, or false. Critically, CEA22 fail to establish the stated premise for their reanalysis. They fail to demonstrate how composition or rate heterogeneity supposedly impacted the phylogeny estimate of ZEA, let alone the results of other recent studies. Moreover, despite their claim of comprehensive sampling of Coleoptera, their dataset is neither the most diverse with respect to species and higher taxa included, nor anywhere near the largest in terms of sequence data and sampled loci. Although CEA22 does contribute additional fossils for calibration, those seeking the best available estimate for Coleoptera phylogeny and evolution based on molecular data are advised to look elsewhere.

     
    more » « less